Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
bioRxiv ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38585724

ABSTRACT

Neurofibromatosis Type 1 (NF1) is a common cancer predisposition syndrome, caused by heterozygous loss of function mutations in the tumor suppressor gene NF1. Individuals with NF1 develop benign tumors of the peripheral nervous system (neurofibromas), originating from the Schwann cell linage after somatic loss of the wild type NF1 allele, some of which progress further to malignant peripheral nerve sheath tumors (MPNST). There is only one FDA approved targeted therapy for symptomatic plexiform neurofibromas and none approved for MPNST. The genetic basis of NF1 syndrome makes associated tumors ideal for using synthetic drug sensitivity approaches to uncover therapeutic vulnerabilities. We developed a drug discovery pipeline to identify therapeutics for NF1-related tumors using isogeneic pairs of NF1-proficient and deficient immortalized human Schwann cells. We utilized these in a large-scale high throughput screen (HTS) for drugs that preferentially kill NF1-deficient cells, through which we identified 23 compounds capable of killing NF1-deficient Schwann cells with selectivity. Multiple hits from this screen clustered into classes defined by method of action. Four clinically interesting drugs from these classes were tested in vivo using both a genetically engineered mouse model of high-grade peripheral nerve sheath tumors and human MPNST xenografts. All drugs tested showed single agent efficacy in these models as well as significant synergy when used in combination with the MEK inhibitor selumetinib. This HTS platform yielded novel therapeutically relevant compounds for the treatment of NF1-associated tumors and can serve as a tool to rapidly evaluate new compounds and combinations in the future.

2.
Life Sci Alliance ; 7(5)2024 May.
Article in English | MEDLINE | ID: mdl-38458648

ABSTRACT

Plexiform neurofibromas (PNFs) are nerve tumors caused by loss of NF1 and dysregulation of RAS-MAPK signaling in Schwann cells. Most PNFs shrink in response to MEK inhibition, but targets with increased and durable effects are needed. We identified the anaphylatoxin C5a as increased in PNFs and expressed largely by PNF m acrophages. We defined pharmacokinetic and immunomodulatory properties of a C5aR1/2 antagonist and tested if peptide antagonists augment the effects of MEK inhibition. MEK inhibition recruited C5AR1 to the macrophage surface; short-term inhibition of C5aR elevated macrophage apoptosis and Schwann cell death, without affecting MEK-induced tumor shrinkage. PNF macrophages lacking C5aR1 increased the engulfment of dying Schwann cells, allowing their visualization. Halting combination therapy resulted in altered T-cell distribution, elevated Iba1+ and CD169+ immunoreactivity, and profoundly altered cytokine expression, but not sustained trumor shrinkage. Thus, C5aRA inhibition independently induces macrophage cell death and causes sustained and durable effects on the PNF microenvironment.


Subject(s)
Cytophagocytosis , Neurofibroma, Plexiform , Humans , Macrophages/pathology , Mitogen-Activated Protein Kinase Kinases , Neurofibroma, Plexiform/pathology , Signal Transduction , Tumor Microenvironment
3.
JCI Insight ; 9(2)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38258905

ABSTRACT

Pain of unknown etiology is frequent in individuals with the tumor predisposition syndrome neurofibromatosis 1 (NF1), even when tumors are absent. Nerve Schwann cells (SCs) were recently shown to play roles in nociceptive processing, and we find that chemogenetic activation of SCs is sufficient to induce afferent and behavioral mechanical hypersensitivity in wild-type mice. In mouse models, animals showed afferent and behavioral hypersensitivity when SCs, but not neurons, lacked Nf1. Importantly, hypersensitivity corresponded with SC-specific upregulation of mRNA encoding glial cell line-derived neurotrophic factor (GDNF), independently of the presence of tumors. Neuropathic pain-like behaviors in the NF1 mice were inhibited by either chemogenetic silencing of SC calcium or by systemic delivery of GDNF-targeting antibodies. Together, these findings suggest that alterations in SCs directly modulate mechanical pain and suggest cell-specific treatment strategies to ameliorate pain in individuals with NF1.


Subject(s)
Hypersensitivity , Neuralgia , Neurofibromatosis 1 , Animals , Mice , Neurofibromatosis 1/genetics , Nociception , Glial Cell Line-Derived Neurotrophic Factor/genetics , Schwann Cells
4.
Pediatr Clin North Am ; 70(5): 937-950, 2023 10.
Article in English | MEDLINE | ID: mdl-37704352

ABSTRACT

Neurofibromatosis type I (NF1) is a common dominantly inherited disorder, and one of the most common of the RASopathies. Most individuals with NF1 develop plexiform neurofibromas and cutaneous neurofibromas, nerve tumors caused by NF1 loss of function in Schwann cells. Cell culture models and mouse models of NF1 are being used to test drug efficacy in preclinical trials, which led to Food and Drug Administration approval for use of MEK inhibitors to shrink most inoperable plexiform neurofibromas. This article details methods used for testing in preclinical models, and outlines newer models that may identify additional, curative, strategies.


Subject(s)
Neurofibroma, Plexiform , Neurofibromatosis 1 , United States , Humans , Animals , Mice , Child , Neurofibromatosis 1/complications , Neurofibromatosis 1/diagnosis , Neurofibromatosis 1/drug therapy , Neurofibroma, Plexiform/complications , Neurofibroma, Plexiform/drug therapy
5.
Clin Cancer Res ; 29(18): 3744-3758, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37432984

ABSTRACT

PURPOSE: Malignant peripheral nerve sheath tumors (MPNST) are highly aggressive soft-tissue sarcomas that lack effective treatments, underscoring the urgent need to uncover novel mediators of MPNST pathogenesis that may serve as potential therapeutic targets. Tumor angiogenesis is considered a critical event in MPNST transformation and progression. Here, we have investigated whether endoglin (ENG), a TGFß coreceptor with a crucial role in angiogenesis, could be a novel therapeutic target in MPNSTs. EXPERIMENTAL DESIGN: ENG expression was evaluated in human peripheral nerve sheath tumor tissues and plasma samples. Effects of tumor cell-specific ENG expression on gene expression, signaling pathway activation and in vivo MPNST growth and metastasis, were investigated. The efficacy of ENG targeting in monotherapy or in combination with MEK inhibition was analyzed in xenograft models. RESULTS: ENG expression was found to be upregulated in both human MPNST tumor tissues and plasma-circulating small extracellular vesicles. We demonstrated that ENG modulates Smad1/5 and MAPK/ERK pathway activation and pro-angiogenic and pro-metastatic gene expression in MPNST cells and plays an active role in tumor growth and metastasis in vivo. Targeting with ENG-neutralizing antibodies (TRC105/M1043) decreased MPNST growth and metastasis in xenograft models by reducing tumor cell proliferation and angiogenesis. Moreover, combination of anti-ENG therapy with MEK inhibition effectively reduced tumor cell growth and angiogenesis. CONCLUSIONS: Our data unveil a tumor-promoting function of ENG in MPNSTs and support the use of this protein as a novel biomarker and a promising therapeutic target for this disease.


Subject(s)
Nerve Sheath Neoplasms , Neurofibrosarcoma , Humans , Biomarkers , Cell Line, Tumor , Endoglin/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Nerve Sheath Neoplasms/drug therapy , Nerve Sheath Neoplasms/genetics , Nerve Sheath Neoplasms/metabolism , Signal Transduction
6.
Pediatr Neurol ; 143: 34-43, 2023 06.
Article in English | MEDLINE | ID: mdl-36996759

ABSTRACT

BACKGROUND: Neurofibromatosis type 1 (NF1) is a genetic neurocutaneous disorder commonly associated with motor and cognitive symptoms that greatly impact quality of life. Transcranial magnetic stimulation (TMS) can quantify motor cortex physiology, reflecting the basis for impaired motor function as well as, possibly, clues for mechanisms of effective treatment. We hypothesized that children with NF1 have impaired motor function and altered motor cortex physiology compared to typically developing (TD) control children and children with attention-deficit/hyperactivity disorder (ADHD). METHODS: Children aged 8-17 years with NF1 (n = 21) were compared to children aged 8-12 years with ADHD (n = 59) and TD controls (n = 88). Motor development was assessed using the Physical and Neurological Examination for Subtle Signs (PANESS) scale. The balance of inhibition and excitation in motor cortex was assessed using the TMS measures short-interval cortical inhibition (SICI) and intracortical facilitation (ICF). Measures were compared by diagnosis and tested using bivariate correlations and regression for association with clinical characteristics. RESULTS: In NF1, ADHD severity scores were intermediate between the ADHD and TD cohorts, but total PANESS scores were markedly elevated (worse) compared to both (P < 0.001). Motor cortex ICF (excitatory) was significantly lower in NF1 than in TD and ADHD (P < 0.001), but SICI (inhibitory) did not differ. However, in NF1, better PANESS scores correlated with lower SICI ratios (more inhibition; ρ = 0.62, P = 0.003) and lower ICF ratios (less excitation; ρ = 0.38, P = 0.06). CONCLUSIONS: TMS-evoked SICI and ICF may reflect processes underlying abnormal motor function in children with NF1.


Subject(s)
Neural Inhibition , Neurofibromatosis 1 , Child , Humans , Adolescent , Neural Inhibition/physiology , Neurofibromatosis 1/complications , Quality of Life , Evoked Potentials, Motor/physiology , Electromyography , Transcranial Magnetic Stimulation
7.
iScience ; 26(2): 106096, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36818284

ABSTRACT

Malignant peripheral nerve sheath tumors (MPNSTs) are soft-tissue sarcomas of the peripheral nervous system that develop either sporadically or in the context of neurofibromatosis type 1 (NF1). MPNST diagnosis can be challenging and treatment outcomes are poor. We present here a resource consisting of the genomic characterization of 9 widely used human MPNST cell lines for their use in translational research. NF1-related cell lines recapitulated primary MPNST copy number profiles, exhibited NF1, CDKN2A, and SUZ12/EED tumor suppressor gene (TSG) inactivation, and presented no gain-of-function mutations. In contrast, sporadic cell lines collectively displayed different TSG inactivation patterns and presented kinase-activating mutations, fusion genes, altered mutational frequencies and COSMIC signatures, and different methylome-based classifications. Cell lines re-classified as melanomas and other sarcomas exhibited a different drug-treatment response. Deep genomic analysis, methylome-based classification, and cell-identity marker expression, challenged the identity of common MPNST cell lines, opening an opportunity to revise MPNST differential diagnosis.

8.
PLoS One ; 18(2): e0281876, 2023.
Article in English | MEDLINE | ID: mdl-36809290

ABSTRACT

Neurofibromatosis Type 2 is an inherited disease characterized by Schwann cell tumors of cranial and peripheral nerves. The NF2 gene encodes Merlin, a member of the ERM family consisting of an N-terminal FERM domain, a central α-helical region, and a C-terminal domain. Changes in the intermolecular FERM-CTD interaction allow Merlin to transition between an open, FERM accessible conformation and a closed, FERM-inaccessible conformation, modulating Merlin activity. Merlin has been shown to dimerize, but the regulation and function Merlin dimerization is not clear. We used a nanobody based binding assay to show that Merlin dimerizes via a FERM-FERM interaction, orientated with each C-terminus close to each other. Patient derived and structural mutants show that dimerization controls interactions with specific binding partners, including HIPPO pathway components, and correlates with tumor suppressor activity. Gel filtration experiments showed that dimerization occurs after a PIP2 mediated transition from closed to open conformation monomers. This process requires the first 18 amino acids of the FERM domain and is inhibited by phosphorylation at serine 518. The discovery that active, open conformation Merlin is a dimer represents a new paradigm for Merlin function with implications for the development of therapies designed to compensate for Merlin loss.


Subject(s)
Genes, Neurofibromatosis 2 , Neurofibromin 2 , Humans , Dimerization , Genes, Tumor Suppressor , Neurofibromin 2/genetics , Protein Structure, Tertiary , Protein Multimerization
9.
Oncogene ; 42(13): 1038-1047, 2023 03.
Article in English | MEDLINE | ID: mdl-36759572

ABSTRACT

Neurofibromatosis type 1 (NF1) patients are predisposed to develop plexiform neurofibromas (PNFs). Three endoplasmic reticulum (ER) stress response pathways restore cellular homeostasis. The unfolded protein response (UPR) sensors contribute to tumor initiation in many cancers. We found that all three UPR pathways were activated in mouse and human PNFs, with protein kinase RNA [PKR]-like ER kinase (PERK) the most highly expressed. We tested if neurofibroma cells adapt to ER stress, leading to their growth. Pharmacological or genetic inhibition of PERK reduced mouse neurofibroma-sphere number, and genetic inhibition in PERK in Schwann cell precursors (SCPs) decreased tumor-like lesion numbers in a cell transplantation model. Further, in a PNF mouse model, deletion of PERK in Schwann cells (SCs) and SCPs reduced tumor size, number, and increased survival. Mechanistically, loss of Nf1 activated PERK-eIF2α-ATF4 signaling and increased ATF4 downstream target gene p21 translocation from nucleus to cytoplasm. This nucleus-cytoplasm translocation was mediated by exportin-1. Runx transcriptionally activated ribosome gene expression and increased protein synthesis to allow SCs to adapt to ER stress and tumor formation. We propose that targeting proteostasis might provide cytotoxic and/or potentially durable novel therapy for PNFs.


Subject(s)
Neurofibroma, Plexiform , Neurofibroma , Neurofibromatosis 1 , Animals , Humans , Mice , Core Binding Factor Alpha 2 Subunit/genetics , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism , Endoplasmic Reticulum Stress/genetics , Unfolded Protein Response/genetics
10.
J Pharmacol Exp Ther ; 385(2): 106-116, 2023 05.
Article in English | MEDLINE | ID: mdl-36849412

ABSTRACT

Individuals with neurofibromatosis type 1 develop rat sarcoma virus (RAS)-mitogen-activated protein kinase-mitogen-activated and extracellular signal-regulated kinase (RAS-MAPK-MEK)-driven nerve tumors called neurofibromas. Although MEK inhibitors transiently reduce volumes of most plexiform neurofibromas in mouse models and in neurofibromatosis type 1 (NF1) patients, therapies that increase the efficacy of MEK inhibitors are needed. BI-3406 is a small molecule that prevents Son of Sevenless (SOS)1 interaction with Kirsten rat sarcoma viral oncoprotein (KRAS)-GDP, interfering with the RAS-MAPK cascade upstream of MEK. Single agent SOS1 inhibition had no significant effect in the DhhCre;Nf1 fl/fl mouse model of plexiform neurofibroma, but pharmacokinetics (PK)-driven combination of selumetinib with BI-3406 significantly improved tumor parameters. Tumor volumes and neurofibroma cell proliferation, reduced by MEK inhibition, were further reduced by the combination. Neurofibromas are rich in ionized calcium binding adaptor molecule 1 (Iba1)+ macrophages; combination treatment resulted in small and round macrophages, with altered cytokine expression indicative of altered activation. The significant effects of MEK inhibitor plus SOS1 inhibition in this preclinical study suggest potential clinical benefit of dual targeting of the RAS-MAPK pathway in neurofibromas. SIGNIFICANCE STATEMENT: Interfering with the RAS-mitogen-activated protein kinase (RAS-MAPK) cascade upstream of mitogen activated protein kinase kinase (MEK), together with MEK inhibition, augment effects of MEK inhibition on neurofibroma volume and tumor macrophages in a preclinical model system. This study emphasizes the critical role of the RAS-MAPK pathway in controlling tumor cell proliferation and the tumor microenvironment in benign neurofibromas.


Subject(s)
Neurofibroma, Plexiform , Neurofibroma , Neurofibromatosis 1 , Animals , Mice , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases , Neurofibroma/drug therapy , Neurofibroma, Plexiform/drug therapy , Neurofibromatosis 1/drug therapy , Neurofibromatosis 1/pathology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/therapeutic use , Tumor Microenvironment , SOS1 Protein/metabolism
11.
JCI Insight ; 7(18)2022 09 22.
Article in English | MEDLINE | ID: mdl-36134665

ABSTRACT

To define alterations early in tumor formation, we studied nerve tumors in neurofibromatosis 1 (NF1), a tumor predisposition syndrome. Affected individuals develop neurofibromas, benign tumors driven by NF1 loss in Schwann cells (SCs). By comparing normal nerve cells to plexiform neurofibroma (PN) cells using single-cell and bulk RNA sequencing, we identified changes in 5 SC populations, including a de novo SC progenitor-like (SCP-like) population. Long after Nf1 loss, SC populations developed PN-specific expression of Dcn, Postn, and Cd74, with sustained expression of the injury response gene Postn and showed dramatic expansion of immune and stromal cell populations; in corresponding human PNs, the immune and stromal cells comprised 90% of cells. Comparisons between injury-related and tumor monocytes/macrophages support early monocyte recruitment and aberrant macrophage differentiation. Cross-species analysis verified each SC population and unique conserved patterns of predicted cell-cell communication in each SC population. This analysis identified PROS1-AXL, FGF-FGFR, and MIF-CD74 and its effector pathway NF-κB as deregulated in NF1 SC populations, including SCP-like cells predicted to influence other types of SCs, stromal cells, and/or immune cells in mouse and human. These findings highlight remarkable changes in multiple types of SCs and identify therapeutic targets for PN.


Subject(s)
Neurofibroma, Plexiform , Neurofibromatosis 1 , Animals , Humans , Mice , NF-kappa B/metabolism , Neurofibroma, Plexiform/genetics , Neurofibroma, Plexiform/metabolism , Neurofibroma, Plexiform/pathology , Neurofibromatosis 1/genetics , Neurofibromatosis 1/pathology , Schwann Cells/metabolism , Schwann Cells/pathology , Tumor Microenvironment
12.
Clin Cancer Res ; 28(15): 3185-3195, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35446392

ABSTRACT

Malignant peripheral nerve sheath tumors (MPNST) are aggressive soft-tissue sarcomas that represent an important clinical challenge, particularly given their strong tendency to relapse and metastasize and their relatively poor response to conventional therapies. To date, targeted, noncytotoxic treatments have demonstrated limited clinical success with MPNSTs, highlighting the need to explore other key pathways to find novel, improved therapeutic approaches. Here, we review evidence supporting the crucial role of the RAS/MEK/ERK pathway and angiogenesis in MPNST pathogenesis, and we focus on the potential of therapies targeting these pathways to treat this disease. We also present works suggesting that the combination of MEK inhibitors and antiangiogenic agents could represent a promising therapeutic strategy to manage MPNSTs. In support of this notion, we discuss the preclinical rational and clinical benefits of this combination therapy in other solid tumor types. Finally, we describe other emerging therapeutic approaches that could improve patient outcomes in MPNSTs, such as immune-based therapies.


Subject(s)
Nerve Sheath Neoplasms , Neurofibrosarcoma , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Humans , Mitogen-Activated Protein Kinase Kinases , Neoplasm Recurrence, Local/drug therapy , Nerve Sheath Neoplasms/drug therapy , Neurofibrosarcoma/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
13.
Elife ; 112022 03 21.
Article in English | MEDLINE | ID: mdl-35311647

ABSTRACT

Neurofibromatosis type 1 (NF1) is characterized by nerve tumors called neurofibromas, in which Schwann cells (SCs) show deregulated RAS signaling. NF1 is also implicated in regulation of cAMP. We identified the G-protein-coupled receptor (GPCR) P2ry14 in human neurofibromas, neurofibroma-derived SC precursors (SCPs), mature SCs, and mouse SCPs. Mouse Nf1-/- SCP self-renewal was reduced by genetic or pharmacological inhibition of P2ry14. In a mouse model of NF1, genetic deletion of P2ry14 rescued low cAMP signaling, increased mouse survival, delayed neurofibroma initiation, and improved SC Remak bundles. P2ry14 signals via Gi to increase intracellular cAMP, implicating P2ry14 as a key upstream regulator of cAMP. We found that elevation of cAMP by either blocking the degradation of cAMP or by using a P2ry14 inhibitor diminished NF1-/- SCP self-renewal in vitro and neurofibroma SC proliferation in in vivo. These studies identify P2ry14 as a critical regulator of SCP self-renewal, SC proliferation, and neurofibroma initiation.


Subject(s)
Cyclic AMP/metabolism , Neurofibroma , Neurofibromatosis 1 , Receptors, Purinergic P2Y/metabolism , Animals , Cell Self Renewal , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Mice , Neurofibroma/genetics , Neurofibroma/metabolism , Neurofibroma/pathology , Neurofibromatosis 1/genetics , Neurofibromatosis 1/pathology , Neurofibromin 1/genetics , Neurofibromin 1/metabolism , Schwann Cells/metabolism
14.
Cell Rep ; 37(4): 109885, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34706238

ABSTRACT

Sertoli cells are highly polarized testicular supporting cells that simultaneously nurture multiple stages of germ cells during spermatogenesis. Proper localization of polarity protein complexes within Sertoli cells, including those responsible for blood-testis barrier formation, is vital for spermatogenesis. However, the mechanisms and developmental timing that underlie Sertoli cell polarity are poorly understood. We investigate this aspect of testicular function by conditionally deleting Cdc42, encoding a Rho GTPase involved in regulating cell polarity, specifically in Sertoli cells. Sertoli Cdc42 deletion leads to increased apoptosis and disrupted polarity of juvenile and adult testes but does not affect fetal and postnatal testicular development. The onset of the first wave of spermatogenesis occurs normally, but it fails to progress past round spermatid stages, and by young adulthood, conditional knockout males exhibit a complete loss of spermatogenic cells. These findings demonstrate that Cdc42 is essential for Sertoli cell polarity and for maintaining steady-state sperm production.


Subject(s)
Sertoli Cells/enzymology , Spermatids/enzymology , Spermatogenesis , cdc42 GTP-Binding Protein/metabolism , Animals , Male , Mice , cdc42 GTP-Binding Protein/genetics
15.
Oncogene ; 40(24): 4229-4241, 2021 06.
Article in English | MEDLINE | ID: mdl-34079083

ABSTRACT

Malignant peripheral nerve sheath tumors (MPNST) are aggressive soft-tissue sarcomas that cause significant mortality in adults with neurofibromatosis type 1. We compared gene expression of growth factors in normal human nerves to MPNST and normal human Schwann cells to MPNST cell lines. We identified WNT5A as the most significantly upregulated ligand-coding gene and verified its protein expression in MPNST cell lines and tumors. In many contexts WNT5A acts as an oncogene. However, inhibiting WNT5A expression using shRNA did not alter MPNST cell proliferation, invasion, migration, or survival in vitro. Rather, shWNT5A-treated MPNST cells upregulated mRNAs associated with the remodeling of extracellular matrix and with immune cell communication. In addition, these cells secreted increased amounts of the proinflammatory cytokines CXCL1, CCL2, IL6, CXCL8, and ICAM1. Versus controls, shWNT5A-expressing MPNST cells formed larger tumors in vivo. Grafted tumors contained elevated macrophage/stromal cells, larger and more numerous blood vessels, and increased levels of Mmp9, Cxcl13, Lipocalin-1, and Ccl12. In some MPNST settings, these effects were mimicked by targeting the WNT5A receptor ROR2. These data suggest that the non-canonical Wnt ligand WNT5A inhibits MPNST tumor formation by modulating the MPNST microenvironment, so that blocking WNT5A accelerates tumor growth in vivo.


Subject(s)
Cell Proliferation/genetics , Nerve Sheath Neoplasms/genetics , Tumor Microenvironment/genetics , Wnt-5a Protein/genetics , Cell Line, Tumor , Cell Movement/genetics , Extracellular Matrix/genetics , Humans , Nerve Sheath Neoplasms/pathology , Neurofibromatosis 1/genetics , Neurofibromatosis 1/pathology , Neurofibrosarcoma/genetics , Neurofibrosarcoma/pathology , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Schwann Cells/pathology
16.
Cancers (Basel) ; 13(7)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808166

ABSTRACT

Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive, genomically complex, have soft tissue sarcomas, and are derived from the Schwann cell lineage. Patients with neurofibromatosis type 1 syndrome (NF1), an autosomal dominant tumor predisposition syndrome, are at a high risk for MPNSTs, which usually develop from pre-existing benign Schwann cell tumors called plexiform neurofibromas. NF1 is characterized by loss-of-function mutations in the NF1 gene, which encode neurofibromin, a Ras GTPase activating protein (GAP) and negative regulator of RasGTP-dependent signaling. In addition to bi-allelic loss of NF1, other known tumor suppressor genes include TP53, CDKN2A, SUZ12, and EED, all of which are often inactivated in the process of MPNST growth. A sleeping beauty (SB) transposon-based genetic screen for high-grade Schwann cell tumors in mice, and comparative genomics, implicated Wnt/ß-catenin, PI3K-AKT-mTOR, and other pathways in MPNST development and progression. We endeavored to more systematically test genes and pathways implicated by our SB screen in mice, i.e., in a human immortalized Schwann cell-based model and a human MPNST cell line, using CRISPR/Cas9 technology. We individually induced loss-of-function mutations in 103 tumor suppressor genes (TSG) and oncogene candidates. We assessed anchorage-independent growth, transwell migration, and for a subset of genes, tumor formation in vivo. When tested in a loss-of-function fashion, about 60% of all TSG candidates resulted in the transformation of immortalized human Schwann cells, whereas 30% of oncogene candidates resulted in growth arrest in a MPNST cell line. Individual loss-of-function mutations in the TAOK1, GDI2, NF1, and APC genes resulted in transformation of immortalized human Schwann cells and tumor formation in a xenograft model. Moreover, the loss of all four of these genes resulted in activation of Hippo/Yes Activated Protein (YAP) signaling. By combining SB transposon mutagenesis and CRISPR/Cas9 screening, we established a useful pipeline for the validation of MPNST pathways and genes. Our results suggest that the functional genetic landscape of human MPNST is complex and implicate the Hippo/YAP pathway in the transformation of neurofibromas. It is thus imperative to functionally validate individual cancer genes and pathways using human cell-based models, to determinate their role in different stages of MPNST development, growth, and/or metastasis.

17.
Curr Oncol Rep ; 23(4): 45, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33721151

ABSTRACT

PURPOSE OF REVIEW: Patients with neurofibromatosis type 1 (NF1) are at increased risk for benign and malignant neoplasms. Recently, targeted therapy with the MEK inhibitor class has helped address these needs. We highlight recent successes with selumetinib while acknowledging ongoing challenges for NF1 patients and future directions. RECENT FINDINGS: MEK inhibitors have demonstrated efficacy for NF1-related conditions, including plexiform neurofibromas and low-grade gliomas, two common causes of NF1-related morbidity. Active investigations for NF1-related neoplasms have benefited from advanced understanding of the genomic and cell signaling alterations in these conditions and development of sound preclinical animal models. Selumetinib has become the first FDA-approved targeted therapy for NF1 following its demonstrated efficacy for inoperable plexiform neurofibroma. Investigations of combination therapy and the development of a representative NF1 swine model hold promise for translating therapies for other NF1-associated pathology.


Subject(s)
Benzimidazoles/therapeutic use , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Neurofibromatosis 1/drug therapy , Animals , Clinical Trials as Topic , Disease Models, Animal , Humans , Neurofibroma, Plexiform/drug therapy , Neurofibromatosis 1/genetics , Precision Medicine , Protein Kinase Inhibitors/therapeutic use , Signal Transduction , Swine
18.
Glia ; 69(8): 1837-1851, 2021 08.
Article in English | MEDLINE | ID: mdl-33507559

ABSTRACT

To facilitate analyses of purinergic signaling in peripheral nerve glia, we review recent literature and catalog purinergic receptor mRNA expression in cultured mouse Schwann cells (SCs). Purinergic signaling can decrease developmental SC proliferation, and promote SC differentiation. The purinergic receptors P2RY2 and P2RX7 are implicated in nerve development and in the ratio of Remak SCs to myelinating SCs in differentiated peripheral nerve. P2RY2, P2RX7, and other receptors are also implicated in peripheral neuropathies and SC tumors. In SC tumors lacking the tumor suppressor NF1, the SC pathway that suppresses SC growth through P2RY2-driven ß-arrestin-mediated AKT signaling is aberrant. SC-released purinergic agonists acting through SC and/or neuronal purinergic receptors activate pain responses. In all these settings, purinergic receptor activation can result in calcium-independent and calcium-dependent release of SC ATP and UDP, growth factors, and cytokines that may contribute to disease and nerve repair. Thus, current research suggests that purinergic agonists and/or antagonists might have the potential to modulate peripheral glia function in development and in disease.


Subject(s)
Peripheral Nervous System Diseases , Schwann Cells , Animals , Mice , Neuroglia/metabolism , Peripheral Nervous System Diseases/metabolism , Receptors, Purinergic/metabolism , Schwann Cells/metabolism , Signal Transduction/physiology
19.
J Clin Oncol ; 39(7): 797-806, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33507822

ABSTRACT

PURPOSE: Patients with neurofibromatosis type 1 (NF1) frequently develop plexiform neurofibromas (PNs), which can cause significant morbidity. We performed a phase II trial of the MAPK/ERK kinase inhibitor, mirdametinib (PD-0325901), in patients with NF1 and inoperable PNs. The primary objective was response rate based on volumetric magnetic resonance imaging analysis. METHODS: Inclusion criteria included age ≥ 16 years and a PN that was either progressive or causing significant morbidity. First-dose pharmacokinetics were performed. Patients completed patient-reported outcome measures. Patients received mirdametinib by mouth twice a day at 2 mg/m2/dose (maximum dose = 4 mg twice a day) in a 3-week on/1-week off sequence. Each course was 4 weeks in duration. Evaluations were performed after four courses for the first year and then after every six courses. Patients could receive a maximum of 24 total courses. RESULTS: Nineteen patients were enrolled, and all 19 received mirdametinib. The median age was 24 years (range, 16-39 years); the median baseline tumor volume was 363.8 mL (range, 3.9-5,161 mL). Eight of the 19 patients (42%) achieved a partial response of the target PN by course 12, and 10 (53%) had stable disease. One patient (5%) developed progressive disease at course 8. Significant and durable decreases were observed in pain ratings. CONCLUSION: To our knowledge, this analysis represents the first characterization of the activity and pharmacokinetics of mirdametinib in patients with NF1 and PNs and is the first published response study for MAPK/ERK kinase inhibitors in adults with NF1 and PNs. Mirdametinib given at 2 mg/m2/dose (maximum dose, 4 mg) twice daily in a 3-week on/1-week off sequence resulted in a 42% partial response rate with preliminary evidence of reduction in pain.


Subject(s)
Benzamides/therapeutic use , Diphenylamine/analogs & derivatives , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Neurofibroma, Plexiform/drug therapy , Neurofibromatosis 1/drug therapy , Protein Kinase Inhibitors/therapeutic use , Adolescent , Adult , Benzamides/adverse effects , Benzamides/pharmacokinetics , Diphenylamine/adverse effects , Diphenylamine/pharmacokinetics , Diphenylamine/therapeutic use , Female , Humans , Magnetic Resonance Imaging , Male , Mitogen-Activated Protein Kinase Kinases/metabolism , Neurofibroma, Plexiform/diagnostic imaging , Neurofibroma, Plexiform/enzymology , Neurofibromatosis 1/diagnostic imaging , Neurofibromatosis 1/enzymology , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/pharmacokinetics , Time Factors , Treatment Outcome , United States , Young Adult
20.
Oncogene ; 40(5): 951-963, 2021 02.
Article in English | MEDLINE | ID: mdl-33293695

ABSTRACT

MicroRNAs (miRs) are small non-coding RNAs that can have large impacts on oncogenic pathways. Possible functions of dysregulated miRs have not been studied in neurofibromatosis type 1 (NF1) plexiform neurofibromas (PNFs). In PNFs, Schwann cells (SCs) have biallelic NF1 mutations necessary for tumorigenesis. We analyzed a miR microarray comparing with normal and PNF SCs and identified differences in miR expression, and we validated in mouse PNFs versus normal mouse SCs by qRT-PCR. Among these, miR-155 was a top overexpressed miR, and its expression was regulated by RAS/MAPK signaling. Overexpression of miR-155 increased mature Nf1-/- mouse SC proliferation. In SC precursors, which model tumor-initiating cells, pharmacological and genetic inhibition of miR-155 decreased PNF-derived sphere numbers in vitro, and we identified Maf as a miR-155 target. In vivo, global deletion of miR-155 significantly decreased tumor number and volume, increasing mouse survival. Fluorescent nanoparticles entered PNFs, suggesting that an anti-miR might have therapeutic potential. However, treatment of established PNFs using anti-miR-155 peptide nucleic acid-loaded nanoparticles marginally decreased tumor numbers and did not reduce tumor growth. These results suggest that miR-155 plays a functional role in PNF growth and/or SC proliferation, and that targeting neurofibroma miRs is feasible, and might provide novel therapeutic opportunities.


Subject(s)
MicroRNAs/genetics , Mitogen-Activated Protein Kinase Kinases/genetics , Neurofibroma/genetics , Neurofibromin 1/genetics , Animals , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Humans , Mice , Mice, Knockout , Neurofibroma/pathology , Schwann Cells/metabolism , Schwann Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...